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Abstract. The wavevector dependence of the effective diffusion coefficient determined 
from the inital decay of the dynamic structure factor is calculated correct to first order in the 
concentration for a system of interacting Brownian particles. 

1. Introduction 

Intensity fluctuation spectroscopy is widely used to determine diffusion coefficients of 
proteins and other biological macromolecules. Concentration dependence of the 
diffusion coefficient is almost invariably observed, reflecting the operation of hydro- 
dynamic and direct potential (hard-sphere and electrostatic) interactions between the 
molecules in solution. The available theories which give a complete treatment of 
hydrodynamic and direct interaction effects (Batchelor 1976, Felderhof 1978) refer to 
the limit of zero wavevector, whereas quasielastic light-scattering techniques probe 
concentration fluctuations in a single Fourier component of finite wavevector. 

In extending either the approach of Batchelor (1976) or that of Felderhof (1978) to 
finite wavevector, it is necessary to consider the timescale 3n which the result obtained 
is likely to be valid. Two characteristic times, the Brownian relaxation time 78 and the 
interaction relaxation time T ~ ,  have been delineated by Pusey (1975, 1978). Batchelor 
(1976) makes explicit use of the separation of these timescales in his analysis. Marqusee 
and Deutch (1 980) have recently discussed macromolecular self-diffusion and 
concluded that analyses of the type developed by Batchelor (1976) and Felderhof 
(1978) refer to events on ther‘plateau’ timescale TB<< T<< T ~ .  In this paper it is our 
purpose to extend the analysis of Felderhof (1978) to calculate the wavevector 
dependence of the effective diffusion coefficient determined from the intial decay of the 
dynamic structure factor which is observed in quasielastic light-scattering experiments. 

Section 2 is concerned with the definition of the diffusion matrix for a system of 
interacting macromolecules and the derivation of an equation for the time evolution of 
the local particle number density (Felderhof 1978). In § 3 we introduce an ansatz 
which allows calculation of the wavevector dependence of the diffusion coefficient. 
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0305-4470/81/113093+07$01.50 @ 1981 The Institute of Physics 3093 



3094 P R Wills 

In 9 4 the significance of the result obtained is discussed in relation to other calculations 
of the diffusion coefficient which may be determined using quasielastic light-scattering 
spectroscopy. 

2. Brownian motion of interacting particles 

The Brownian motion of N weakly interacting particles suspended in a low-Reynolds- 
number fluid may be described (Zwanzig 1969) by a Smoluchowski equation for the 
temporal evolution of their joint probability distribution P( X): 

dP/a t  = V . 9  * [CP+ (l/kT)(VU)P]. (2.1) 

Here X E (xl, x2, , . . , x N )  is the position of the system in configuration space and 
V = a/aX. The coefficient 9(X)  is a matrix ( Q r , ) N x N  of diffusion tensors, U ( X )  is the 
total potential energy of interaction between the particles, k is Boltzmann’s constant 
and T is the absolute temperature. The terminal velocity V = (ul, 0 2 ,  . . . , u N )  of the 
system through configuration space when the particles have steady forces 
F1, F 2 , .  . . , FN applied to them is governed (Batchelor 1972, 1976) by the mobility 
matrix d(X): 

V = d * ( F l , F * ,  . . . , E v ) .  (2.2) 

The diffusion and mobility matrices are related by the generalised Einstein relation 
(Murphy and Aguirre 1972, Wills 1979) 

9 = kTd.  (2.3) 

The dependence of 9 on the configuration X of the system may, in the dilute limit, 
be taken into account by pairwise consideratiori of the hydrodynamic interactions. 
General expressions for elements b,, of d when the particles are spheres of radius a 
immersed in a fluid of viscosity 77 have been given by Batchelor (1972, 1Y76), leading to 
the formula 

where r = x, - -x i  is the pair separation vector, I is the unit isotropic tensor, iY is the unit 
dyadic rr / r2  and Aab ( r )  and B a b  ( r )  are coefficients whose values, for ‘stick’ boundary 
conditions, are known accurately from theory and by calculation. The free-particle 
diffusion coefficient Do is given by the Stokes-Einstein relation 

D o =  k T / 6 ~ q a ( l - [ j  (2.5) 

where the parameter 6 characterises the boundary condition. It takes values in the 
range 0 G 4 G 5,  the value 4 = 0 corresponding to ‘stick’ and the value ,$ = $to  pure ‘slip’. 
Felderhof (1977, 1978) has given the alternative expressions 

Qi j  =Dol + A i j ( r )  

Qij  = Bii(r) 
j # i  

(2.6a) 

(2.6b) 
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and provides extended series expansions (in u / r )  for evaluation of Ai j ( r )  and B i j ( r )  with 
arbitrary boundary conditions, These different conventions for the specification of the 
pair diffusion tensors Dij are useful in different contexts, and they are related by the 
transformations 

Aii (r )  = Do[Aii(r)  -Bi i ( r ) ] t t  + Do[Bii(r)  - 111, ( 2 . 7 ~ )  

B i j ( r )  = Do[Aij(r)  -B i j ( r ) ] t t  + DoBij(r)l,  i # j .  (2.7b) 

After assuming pair interactions of the form 

j # i, 
1" 

u(X) =- 1 C uij(rij), 2 i = l  j = 1  

Felderhof (1978) used the N-particle Smoluchowski equation (2.1) to derive an 
equation for the time evolution of the particle number density n(x1, t )  in terms of the 
pair density n2(x1, x2, t ) :  

The tensors A12 and B12 are defined in equation (2.6) and V i  = a/axi. For a system in 
equilibrium, n(xl)  and n2(x1 ,  xz) are time independent and have the values no and nzgo 
respectively, where the equilibrium radial distribution function go(xl, XZ) is given, 
correct to order zero in no, by 

We shall now consider a perturbation solution of equation (2.9) which allows the 
derivation of the concentration dependence and wavevector dependence of the 
diffusion coefficient. 

3. k dependence of the diffusion coefficient 

We denote the equilibrium potential energy of the system by U o ( X )  and allow a 
perturbation potential S U ( X )  of the form 

N 

S U ( X )  = Su 1 exp(ik -x&),  Su c kT. (3.1) 
i = l  

The equilibrium configuration integral is given by 

Qo = I . . . lvexp( -3) dxl dxz . . . dxN. k T  (3.2) 
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When the system is perturbed, the configuration integral is given by 

Q = 1 . . . 1 exp( - uo+Sy dxl dxz . . . dxN 
V k T  

= I . . . Ivexp( -2) dxl dxz . . . dxN 

(3 .3u)  

(3.3b) 

The first term in equation (3.3b) is Qo and the second term is zero provided U. depends 
only on the relative coordinates of the particles as stated in equation (2.8). Thus, any 
perturbation to the configuration integral will appear in a term of higher order in Su/kT. 
We may now use standard formulae to write explicit expressions for the non- 
equilibrium particle number density and pair density. Keeping non-zero terms of order 
Su/kT, we obtain 

n ( x , ) = - /  N ...I e x p ( - Y ) d x z d x 3  . . .  dxu 
Q V 

(3.4a) 

= no[l - (Su/kT) exp(ik .XI)] (3.4b) 

and 

= nigo{l  - (Su/kT)[exp(ik *xl) + exp(ik -xz)]}. (3 .5b)  

Combining equations (3.4b) and (3 .5b) ,  it is possible to specify the perturbation to the 
pair density in terms of perturbations 6n (x) = n (x) - no to the singlet density: 

n2(x1, xz) = nigo + nogo[Sn (x1) + Sf? (xz)l. (3.6) 

Substitution of equation (3.6) into equation (2.9) gives rise to an equation for the 
response of the system to the imposed perturbation: 

a t  

This equation is the same as equation (3.9) of Felderhof (1978) who considered the 
response of the system to small deviations of the particle number density and radial 
distribution function away from their equilibrium values. We have now established that 
it also describes the response to a small perturbation of defined wavelength on the 
system Hamiltonian. 

Equation (3.7) may be used to obtain a diffusion equation in Sn(x)  with a tensor 
diffusion coefficient D ( k ) .  The expressions for Sn (x2) and V2Sn (x2) in terms of 6n (XI) 

and VlSn  (x1) required for this reduction are obtained directly from equation (3.46): 

Sn (x2) = cos(k r )  Sn (xl) + (1/ k2) sin(k r ) k  - VISn (xl), ( 3 . 8 ~ )  

VzSn (xz) = exp(ik r)VISn (xl). (3.8b) 
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It is worthy of note that in the limit k = 0, these expressions correspond to approxima- 
tions invoked by Felderhof (1978) in his derivation of the concentration dependence of 
the diffusion coefficient. Consideration of the various terms in equation (3.7) using 
equations ( 3 . 8 ~ )  and (3.8b) allows derivation of the wavevector dependence of the 
diffusion coefficient. 

The second term in equation (3.7) is the wavevector-dependent thermodynamic 
virial correction. Eliminating vanishing terms and integrating over angles, we obtain 

(V1ulz)g0 Sn(x2) d x ~ = V 1 . n ~ D ~ C ~ . V ~ [ S n ( x ~ ) ]  (3.9) 

where 

This part of the diffusion coefficient is anisotropic 
direction of k gives rise to no thermodynamic force 

From the 

where 

third term in equation (3.7) we obtain 

(3.10) 

because a perturbation in the 
perpendicular to this direction. 

CA = 7 [ [All(r)  + 2Bll(r)  - 3]go(r)r2 dr I (3.12) 

and the scalar coefficients Al l ( r )  and Bll(r)  are defined in equation (2.4). This part of 
the diffusion coefficient has no wavevector dependence, because it corresponds to the 
change in the molecular self-diffusion coefficient due to the presence of neighbouring 
solute molecules (Wills 1979). 

The problem of the divergence in the integral in the fourth term in equation (3.7) 
may be dealt with by treating B12 as the sum of a short-range part Bs, an Oseen part Bo 
and a dipole part BD (Felderhof 1978). After integration over angles we obtain 

V ~ * n o  1 Bl~go*VdSn(xdl  dxl =V1.noD0C~.V1[Sn(xl)l (3.13) 

where 

(3.14) 

The parameter 6 characterises the hydrodynamic boundary condition as in equation 
(2.5) and j2(y) is the spherical Bessel function [(3 - y z )  sin(y)-y cos(y)]/y3. 

1 
r -2u3(1-36) [ j2(kr)go(r)-dr (l-366)]. 
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It is evident from equations (3.9)-(3.14) that equation (3.7) may be rewritten in the 
form 

a -[an(xi)l = V I  .D(k)*Vi[Sa(xi)l (3.15) 
a t  

(3.16) 

Equation (3.15) is a diffusion equation in 6 n ( x 1 )  and D ( k )  is the wavevector-dependent 
diffusion coefficient specifying the response of a system of interacting solute 
macromolecules to a small perturbation of wavevector k. In a quasielastic light- 
scattering experiment, one observes the decay of fluctuations of wavevector k in the 
solute concentration and determines the decay constant 

(3.17) 

Examination of the tensorial character of D ( k )  reveals that equation (3.17) may be 
written in scalar form as 

l- = k 2 D ( k )  (3.18) 

defined by 

r = k * D ( k )  *k. 

where 

D ( k )  =DO{l  +n~[C"(k)+C*+C~(k)+CO(k)-2CD(k)]} (3.19) 

The scalars Ci in equation (3.19) are given by the magnitudes of the tensors Ci specified 
in equations (3.10), (3.12) and (3.14) regardless of their appended tensorial character. 
Equation (3.19) demonstrates that the wavevector dependence of the diffusion 
coefficient for solutions of macromolecules is associated with its concentration depen- 
dence (to first order in the concentration), through the thermodynamic virial terms and 
the correction arising as a result of coupled motions of distinct particles. 

4. Discussion 

In § 3 we introduced a heuristic ansatz (equations (3.1)-(3.6)) which allowed cal- 
culation of the wavevector dependence of the diffusion coefficient governing the time 
evolution of small fluctuations in the particle number density. While a small fluctuation 
treatment is expected to be valid in the limit of zero wavevector (Felderhof 1978), it is to 
be expected that nonlinear effects must be considered at k # 0 (Weissman and Ware 
1978). It is thus important to point out that equation (3.6), which is central to the 
derivation presented here, is correct to first order in the small parameter Su/kT  
introduced in equation (3.1) and ignores correlations in the system which build up 
dynamically when terms of higher order in &/kT feed back into the lower-order 
quantities. The result obtained for the diffusion coefficient (equation (3.16)) is there- 
fore valid for events on a timescale, shorter than that ( T J  characterising significant 
changes in the system configuration. Furthermore, since use of the Smoluchowski 
equation implies a timescale much longer than the Brownian relaxation time ( T ~ ) ,  our 
result is valid on the 'plateau' timescale T~ << T << T~ and should thus be compared with 
calculations of the effective diffusion coefficient which may be determined from the 
initial decay of the dynamic structure factor, that is, the first cumulant of the scattered 
intensity autocorrelation function. 



Wavevector dependence of diffusion coeficient 3099 

Such calculations have been performed by Pusey (1975, 1978), Ackerson (1976, 
1978) and Allison et a1 (1979). Pusey (1975, 1978) did not consider hydrodynamic 
interactions and the expressions for the hydrodynamic interaction tensors used by 
Ackerson (1976) and Allison et a1 (1979) predate the work of Batchelor (1972) and 
Felderhof (1977). However, more recently Ackerson (1978) described a method of 
calculation for the first cumulant which, in the zero wavevector limit, may be used to 
give results for the effective diffusion coefficient identical to those of Batchelor (1976) 
and Felderhof (1978) when exact expressions for the hydrodynamic interaction tensors 
are used (P N Pusey and R J Tough, personal communication). Equation (3.19) of this 
paper reduces to the same result in the limit of zero wavevector; at finite wavevector, it 
represents an improvement over previous calculations of the first cumulant as well as 
over earlier calculations of wavevector corrections to the concentration dependence of 
the Fick’s law coefficient for mutual binary diffusion (Altenberger and Deutch 1973, 
Harris 1976, Hess and Klein 1976, Altenberger 1979). 
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